A stomatin and a degenerin interact in lipid rafts of the nervous system of Caenorhabditis elegans.

نویسندگان

  • M M Sedensky
  • J M Siefker
  • J Y Koh
  • D M Miller
  • P G Morgan
چکیده

In Caenorhabditis elegans, the gene unc-1 controls anesthetic sensitivity and normal locomotion. The protein UNC-1 is a close homolog of the mammalian protein stomatin and is expressed primarily in the nervous system. Genetic studies in C. elegans have shown that the UNC-1 protein interacts with a sodium channel subunit, UNC-8. In humans, absence of stomatin is associated with abnormal sodium and potassium levels in red blood cells. Stomatin also has been postulated to participate in the formation of lipid rafts, which are membrane microdomains associated with protein complexes, cholesterol, and sphingolipids. In this study, we isolated a low-density, detergent-resistant fraction from cell membranes of C. elegans. This fraction contains cholesterol, sphingolipids, and protein consistent with their identification as lipid rafts. We then probed Western blots of protein from the rafts and found that the UNC-1 protein is almost totally restricted to this fraction. The UNC-8 protein is also found in rafts and coimmunoprecipitates UNC-1. A second stomatin-like protein, UNC-24, also affects anesthetic sensitivity, is found in lipid rafts, and regulates UNC-1 distribution. Mutations in the unc-24 gene alter the distribution of UNC-1 in lipid rafts. Each of these mutations alters anesthetic sensitivity in C. elegans. Because lipid rafts contain many of the putative targets of volatile anesthetics, they may represent a novel class of targets for volatile anesthetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans.

The mechanism of action of volatile anesthetics is unknown. In Caenorhabditis elegans, mutations in the gene unc-1 alter anesthetic sensitivity. The protein UNC-1 is a close homologue of the mammalian protein stomatin. Mammalian stomatin is thought to interact with an as-yet-unknown ion channel to control sodium flux. Using both reporter constructs and translational fusion constructs for UNC-1 ...

متن کامل

MEC-2 Is Recruited to the Putative Mechanosensory Complex in C. elegans Touch Receptor Neurons through Its Stomatin-like Domain

BACKGROUND The response to gentle body touch in C. elegans requires a degenerin channel complex containing four proteins (MEC-2, MEC-4, MEC-6, and MEC-10). The central portion of the integral membrane protein MEC-2 contains a stomatin-like region that is highly conserved from bacteria to mammals. The molecular function of this domain in MEC-2, however, is unknown. RESULTS Here, we show that M...

متن کامل

Identification and characterization of human SLP-2, a novel homologue of stomatin (band 7.2b) present in erythrocytes and other tissues.

Human stomatin (band 7.2b) is a 31-kDa erythrocyte membrane protein of unknown function but implicated in the control of ion channel permeability, mechanoreception, and lipid domain organization. Although absent in erythrocytes from patients with hereditary stomatocytosis, stomatin is not linked to this disorder. A second stomatin homologue, termed SLP-1, has been identified in nonerythroid tis...

متن کامل

Stomatin-related olfactory protein, SRO, specifically expressed in the murine olfactory sensory neurons.

We identified a stomatin-related olfactory protein (SRO) that is specifically expressed in olfactory sensory neurons (OSNs). The mouse sro gene encodes a polypeptide of 287 amino acids with a calculated molecular weight of 32 kDa. SRO shares 82% sequence similarity with the murine stomatin, 78% with Caenorhabditis elegans MEC-2, and 77% with C. elegans UNC-1. Unlike other stomatin-family genes,...

متن کامل

Glucose deprivation enhances targeting of GLUT1 to lipid rafts in 3T3-L1 adipocytes.

Glucose deprivation dramatically increases glucose transport activity in 3T3-L1 adipocytes without changing the concentration of GLUT1 in the plasma membrane (PM). Recent data suggest that subcompartments within the PM, specifically lipid rafts, may sequester selected proteins and alter their activity. To evaluate this possibility, we examined the distribution of GLUT1 in Triton X-100-soluble a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 287 2  شماره 

صفحات  -

تاریخ انتشار 2004